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Presentation Outline

» Rationale for model
» Model specifics
»Validation
»Summary
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=% Hg° Oxidation Across SCRs
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> Full-scale
data

» SCRs oxidize
mercury

» Chlorine
content of
coal
Influences
oxidation
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Mercury Speciation In
Combustion Systems
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» Wet scrubbers remove:
» —~90% of Hg™?
» <25% of HgP

» SCR + scrubber as control device?

Source: ICR data
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» Laboratory data

— Effects of temperature, ammonia,
HCI, space velocity

— Adsorption of Hg®

> Pilot data

— Effects of temperature, ammonia,
space velocity, flue gas

— Transients
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== SCR Catalysts Adsorb Hg®

» Lab data from Hocquel et al.

injected Hg(g) total concentration 27.8 pg/Nm3 HGiotal

injprtinn time 10 min Ir’put Hgiotas measured behind catalyst
100 -
S 80 -
g_ 60 — adsorbed
£ —
E 0 — eleased through 37 mg/nt HCI
= 20 —
N
(7] 0 |

0.4 mg/Nm® HCI 3.7mg/Nm®HCI  37.0 mg/Nm® HCI 122.1 mg/Nm® HCl

» Net adsorption of Hg® by catalyst in ten-
minute experiments

» Amount of Hg® adsorbed decreased with
Increasing HCI concentration

» HCI interferes with Hg® adsorption?
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» Adsorption of Hg observed in full-
scale measurements?
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Adsorption
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» Slipstream data (Machalek et al.)

» Pilot-scale SCR with PRB flue gas
» Ammonia decreased HQg® oxidation
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Adsorption
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Pilot-Scale
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=% HCI| Promotes Hg® Oxidation

» Lab data from Hocquel et al.
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» Increasing HCI content of simulated flue
gas increases oxidation

» Little effect of SO,

» HCI reacts with adsorbed Hg® or is itself
adsorbed?

DOE /NETL Hg Control R&D Meeting, July 12-14, 2005



"

REACTION

Computational Approach

»Goal: Predict Hg® oxidation
across SCR catalyst

» Observations:
—Hg not at equilibrium at SCR exit

—Hg adsorption and oxidation
sensitive to ammonia
concentration

—Hg oxidation affected by
concentration of chlorine species
(largely HCI)




o ..
e Hg Speciation at SCR

Temberatures

INTERNATIONAL

100%

_—

T
1
1

L

L

/r'u'
/'
.
-
s o
4
.
-
a1
<]
m
*

»HQg not at

80%

-
o
o
m
-
-
®e
«
£
* L 4
*

% \ - - -
RS B il W S equilibrium at SCR
5 60% : v ‘
Q E
@ ¢ =3 .
% aon Voo exIt
%’ 40% £ \ * ::
X E \
E *
i \
* 100%
20% £
E ¢ NH3 On
3 * NH3 On
= NH3 Off = NH3 Off
0% £ . 80%
100 1,000 10,000 100,000 1,000,000 D
Cl/Hg Molar Ratio g
ot 60%
O
0]
Inlet g
e °> 40%
T
X
20%
0% ‘ T

100 1,000 10,000 100,000 1,000,000
Cl/Hg Molar Ratio

Outlet

DOE /NETL Hg Control R&D Meeting, July 12-14, 2005




"

REACTION

Computational Approach

» Hg adsorption and oxidation
sensitive to ammonia
concentration

»Need to model distribution of
ammonia in catalyst:

»First-order NO Kinetics
»Mass transfer:
»Along channel
»Within porous catalyst
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Computational Approach

» Hg adsorption and oxidation
sensitive to ammonia
concentration

» Distribution of NO along Catalyst

channel:
Pz 1
yi(z)_ yi,o eXp (UA) 1 ] ]_ [ 2 +1]
km W/D kal € e -1

» Distribution of NH follows
stoichiometry of NO reduction
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L NO Reduction Model
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NOx Conversion (measured)

» Slipstream
data from
Rockport
Unit 1

» Two
monolith
catalysts,
two plate
catalysts
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Computational Approach

» Hg oxidation affected by
concentration of chlorine species
(largely HCI)

» Reaction of adsorbed Hg® with HCI

» Competition with NH; for surface sites

> Rate of oxidation:

—E
. ko? ATKHg yHg }\/HCI

N (14— KNHs yNH3 )
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Hg® Oxidation Model
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» Lab data of
Hoquel

» 3 layers of
commercial
plate catalyst

» Simulated flue
gas
— Two HCI levels
» Hg, NO
measurements

made Iin
between layers
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Hg® Oxidation Model
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» Slipstream data (Machalek et al.)
» Pilot-scale SCR with PRB flue gas
» Ammonia decreased HQg® oxidation
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Hg® Oxidation Model

SV, hrt NH4/NO| Avg T, °C |Observed Pred.

C2 5,037 1.7 321 6% =+ 10%| 13%
(Monolith) | 5,051 0.0 326 61% + 13%| 44%
C3 1,927 2.1 327 4% =+ 22%| 87%
(Plate) 2,439 0.0 333 83% + 5% 80%
C4 3,992 1.2 347 520% + 7%l 57%
(Plate) 2,353 0.0 334 83% + 10%| 81%
Co 3,915 1.2 337 10% + 13%| 34%
(Monolith) | 2,219 0.0 325 75% + 50| 76%

» Data of from slipstream reactor,
Rockport 1

» Trends with and without NH,
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Hg® Oxidation Model
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Summary

» Model of Hg® oxidation across SCR
catalysts fits laboratory and
slipstream data

— Activation energies fixed; pre-
exponential factors related to NO
reduction

— Explains non-linear temperature-
dependence

— Effects of ammonia, HCI content, space
velocity and catalyst design included
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